Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment
نویسندگان
چکیده
BACKGROUND Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.
منابع مشابه
Correction: Spatially Extensive Standardized Surveys Reveal Widespread, Multi-Decadal Increase in East Antarctic Adélie Penguin Populations
Seabirds are considered to be useful and practical indicators of the state of marine ecosystems because they integrate across changes in the lower trophic levels and the physical environment. Signals from this key group of species can indicate broad scale impacts or response to environmental change. Recent studies of penguin populations, the most commonly abundant Antarctic seabirds in the west...
متن کاملGenetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider
The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA ...
متن کاملGenetic and Molecular Epidemiological Characterization of a Novel Adenovirus in Antarctic Penguins Collected between 2008 and 2013
Antarctica is considered a relatively uncontaminated region with regard to the infectious diseases because of its extreme environment, and isolated geography. For the genetic characterization and molecular epidemiology of the newly found penguin adenovirus in Antarctica, entire genome sequencing and annual survey of penguin adenovirus were conducted. The entire genome sequences of penguin adeno...
متن کاملHave Historical Climate Changes Affected Gentoo Penguin (Pygoscelis papua) Populations in Antarctica?
The West Antarctic Peninsula (WAP) has been suffering an increase in its atmospheric temperature during the last 50 years, mainly associated with global warming. This increment of temperature trend associated with changes in sea-ice dynamics has an impact on organisms, affecting their phenology, physiology and distribution range. For instance, rapid demographic changes in Pygoscelis penguins ha...
متن کاملND6 gene "lost" and found: evolution of mitochondrial gene rearrangement in Antarctic notothenioids.
Evolution of Antarctic notothenioids in the frigid and oxygen-rich Southern Ocean had led to remarkable genomic changes, most notably the gain of novel antifreeze glycoproteins and the loss of oxygen-binding hemoproteins in the icefish family. Recently, the mitochondrial (mt) NADH dehydrogenase subunit 6 (ND6) gene and the adjacent transfer RNA(Glu) (tRNA(Glu)) were also reportedly lost. ND6 pr...
متن کامل